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Abstract

By expanding the solution of the the two-body, bound-state Bethe–Salpeter equation in terms of basis functions that

obey the boundary conditions, solutions can be obtained to some, if not many, equations that have heretofore proved

intractable. The utility of choosing such basis functions is demonstrated by calculating the zero-energy, bound-state

solutions of a spin-0 boson and a spin-1/2 fermion with unequal masses that interact via scalar electrodynamics and are

described by the Bethe–Salpeter equation in the ladder approximation. The equation is solved by first making a Wick

rotation and then projecting four-dimensional Euclidean space onto the surface of a unit, five-dimensional sphere.

Solutions are expanded in terms of basis functions, each of which obeys the boundary conditions and can be expressed

in terms of hyperspherical harmonics in five-dimensional space. The Bethe–Salpeter equation is discretized by requiring

that the coefficient of each hyperspherical harmonic vanish. All integrations are performed analytically, yielding a

generalized matrix eigenvalue equation that is solved numerically. Although the Bethe–Salpeter equation is separable in

the zero-energy limit, the feature of Bethe–Salpeter equations that often prevents solutions from being obtained

numerically is still present in the equation that is solved.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

There has been growing interest in solving relativistic, bound-state equations, both because important

bound-state systems are relativistic and because the development of high-speed computers at least raises the

possibility that such equations might be solved numerically. One physical problems that is of immediate

interest is the constituent-quark models of mesons [1–4]. Properties of both light and heavy mesons have

been calculated using equations that account for some relativistic effects.

While speculative, there is also interest in constituent models of leptons [5,6] and constituent models of

quarks and leptons [7–11]. If the electron, muon, and tau are bound states of a single system, a severe
constraint is imposed on the interaction and the structure of the composite system. The mass of the tau
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must, of course, be less than the sum of the masses of the bound, constituent particles. Since the ratio of the

electron�s mass to that of the tau�s equals 1/3536, the mass of the electron must be less than 1/3536 of the

sum of the constituent masses. Thus, the interaction must create a highly-relativistic, ultra-strongly bound

state for which the binding energy is almost equal to the sum of the masses of the constituents. That is, the

interaction must create a state that has almost zero energy. Similarly, if the positively- or negatively-

charged quarks are bound states of a single system, the most tightly bound quark would necessarily almost

be a zero-energy state.

A major reason that the Bethe–Salpeter equation [12] is not used more extensively is that, even nu-
merically, the equation is extremely difficult to solve. To obtain numerical solutions, the equation is first

discretized, and then the discretized equation, which is a generalized matrix eigenvalue equation, is solved

numerically. Although the coupling constant is real in the Lagrangian, it is usually very difficult to dis-

cretize the Bethe–Salpeter equation in such a way that the calculated values of the coupling constant, which

are eigenvalues of the generalized matrix eigenvalue equation, are both real and satisfy the Bethe–Salpeter

equation. This problem can, at least sometimes if not often, be overcome by expanding the solution in terms

of basis functions that obey the boundary conditions satisfied by the solution. The utility of choosing such

basis functions is demonstrated by calculating the zero-energy, bound-state solutions of a spin-0 boson and
a spin-1/2 fermion with unequal masses that interact via scalar electrodynamics and are described by the

Bethe–Salpeter equation in the ladder approximation. To solve the equation, it is first Wick rotated [13] and

then four-dimensional, Euclidean space is projected onto the surface of a unit, five-dimensional sphere.

Solutions are expanded in terms of basis functions, each of which satisfies the boundary conditions and is

expressed in terms of hyperspherical harmonics in five-dimensional space. The Bethe–Salpeter equation is

discretized by requiring that the coefficient of each hyperspherical harmonic vanish. All integrations are

performed analytically, yielding a generalized matrix eigenvalue equation that is solved numerically. Al-

though the Bethe–Salpeter equation is separable in the zero-energy limit, the feature of the equation that
usually prevents solutions from being obtained numerically is still present: It is not possible to construct a

generalized matrix eigenvalue equation for which all eigenvalues are real. Nevertheless, the generalized

matrix eigenvalue equation has some real eigenvalues, and these eigenvalues satisfy the Bethe–Salpeter

equation.

Hyperspherical harmonics in (Euclidean) four-dimensional, space–time have previously been used to

represent the angular dependence of solutions to the finite-energy, Bethe–Salpeter equation. As early as

1964, Schwartz [14] obtained bound-state solutions of two equal-mass scalars interacting through /3. More

recently Setôo and Fukui [15] obtained solutions for two unequal-mass scalars interacting through the ex-
change of a massive scalar, and Nieuwenhuis and Tijon [16] considered two equal-mass scalars interacting

through the exchange of a massive scalar. In contrast, here solutions are expressed in terms of hyper-

spherical harmonics in five-dimensional space, so both the angular dependence and the momentum

dependence of solutions are expressed in terms of hyperspherical harmonics.

The numerical method used here is an extension of an analytical method originally proposed by Sugano

and Munakata [17] to obtain zero-energy, bound-state solutions of a spin-0 boson and a spin-1/2 fermion

with equal masses that interact via scalar electrodynamics and are described by the Bethe–Salpeter equation

in the ladder approximation. In that paper the solutions are expanded in terms of basis functions that can
be expressed in terms of hyperspherical harmonics in five-dimensional space, but not all of the basis

functions obey the boundary conditions. When their solutions are analyzed numerically by comparing the

left- and right-hand sides of the equation at a set of widely separated momenta, the left- and right-hand

sides of the equation are found to be unequal. Thus, the solutions are incorrect. Further analysis reveals

that their proposed method for solving the equation fails because the series expansions for the solutions do

not converge. The author made the same error when attempting to obtain zero-energy, bound-state so-

lutions of a spin-0 boson and a spin-1/2 fermion with equal masses that interact via quantum electrody-

namics [5]. In this paper it is demonstrated that when the expansions for solutions are written in terms of
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basis functions that obey the boundary conditions, for the scalar electrodynamics model the expansions

converge to solutions.

Numerical solutions to the bound-state, Bethe–Salpeter equation are typically obtained in three steps. (a)

The singularity in the kernel is removed by a Wick rotation [13], which is accomplished by making the

substitution p0 ! ip0 and rotating the path of integration 90� counterclockwise in the complex p0-plane. If
the singularity is not removed, numerical solutions are exceedingly difficult to obtain [18]. (b) The Bethe–

Salpeter equation is rotationally invariant in three-dimensional space if there are no external fields, so two

angular variables can be separated. In the zero-energy limit the equation is rotationally invariant in four-
dimensional space–time and can be completely separated. The resulting equation for the separated Bethe–

Salpeter ‘‘wave function’’ WðjpjÞ is an equation in the variable jpj where jpj � ðp20 þ p2Þ1=2. In the ladder

approximation a Wick-rotated, separated Bethe–Salpeter equation is of the form

KðjpjÞWðjpjÞ ¼ g1g2
ð2pÞ4

Z 1

0

djqjV ðjpj; jqjÞWðjqjÞ: ð1:1Þ

(c) Finally, the separated integral eigenvalue Eq. (1.1) for the coupling constant is discretized by converting

it into a generalized matrix eigenvalue equation that is solved numerically. The discretization is typically

achieved using one of the following two methods:

To implement the Rayleigh–Ritz–Galerkin method (see, for example, [19,20]), the Bethe–Salpeter ‘‘wave

function’’ WðjpjÞ is expressed in terms of a set of basis functions fBjðjpjÞg,

WðjpjÞ ¼
XN
j¼1

cjBjðjpjÞ: ð1:2Þ

After multiplying (1.1) by BiðjpjÞy and integrating over the variable jpj, the integral equation is converted

into a generalized matrix eigenvalue equation,

Kc ¼ g1g2
ð2pÞ4

ðVH þ VAHÞc: ð1:3Þ

In the above equation, c is a column vector with the elements cj that are the expansion coefficients for the

wave function WðjpjÞ in (1.2), and the matrices VH and VAH are Hermitian and anti-Hermitian, respectively.

To implement the collocation method [19,20], the solution WðjpjÞ is also expanded in terms of basis

functions as given in (1.2). The Bethe–Salpeter equation is then converted into a generalized matrix ei-

genvalue equation of the form (1.3) by requiring that the left- and right-hand sides of the equation agree at

N widely-distributed values of momentum jpj.
In general it is extremely difficult to formulate (1.3) in such a way that the coupling constant g1g2=ð2pÞ4,

which is calculated as an eigenvalue, is forced to be real. A sufficient condition for obtaining real eigen-

values of a generalized matrix eigenvalue Eq. (1.3) is that VAH ¼ 0, K be Hermitian and either K or VH be

positive definite [21]. Somewhat different matrix Eq. (1.3) can be constructed from a Bethe–Salpeter

Eq. (1.1), and this freedom can sometimes be used to convert the Bethe–Salpeter eigenvalue equation into

a generalized matrix eigenvalue equation that yields real eigenvalues.

In this paper a third method, the method of orthogonal functions, is used to discretize and solve the

separated Bethe–Salpeter equation. The solution is expanded in terms of a complete set of basis functions

{BjðjpjÞ} where each basis function satisfies the boundary conditions and is a linear combination of
orthogonal functions {PjðjpjÞ}. Thus,

BjðjpjÞ ¼
XNj

k¼1

bj;kPkðjpjÞ; ð1:4Þ
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where the bj;k are chosen so that BjðjpjÞ satisfies the boundary conditions. Expressing the solution WðjpjÞ in
terms of the BjðjpjÞ as given in (1.4), (1.1) becomes

KðjpjÞ
XN
j¼1

XNj

k¼1

cjbj;kPkðjpjÞ ¼
g1g2
ð2pÞ4

XN
j¼1

XNj

k¼1

Z 1

0

djqjV ðjpj; jqjÞcjbj;kPkðjqjÞ: ð1:5Þ

When the orthogonal functions PjðjpjÞ are chosen to be spherical functions (hyperspherical harmonics with

the four-dimensional angular dependence separated), the integral on the right-hand side of (1.5) can be

evaluated analytically and expressed as a sum of spherical functions. Eq. (1.5) is then solved by requiring

the equality of the coefficient of each spherical function on the left- and right-hand sides. The striking

feature of this method, when it is used to solve the Bethe–Salpeter equation describing a bound state of a

spin-0 boson and a spin-1/2 fermion interacting via scalar electrodynamics, is as follows: Although the

resulting generalized matrix equation is of the form (1.3) and all of the eigenvalues are not forced to be real,

real eigenvalues are obtained. Furthermore, when a sufficiently large number of basis functions are used,
for each real eigenvalue the corresponding series (1.2) converges to a solution of the Bethe–Salpeter

equation.
2. The Bethe–Salpeter equation: separation and boundary conditions

When a spin-0 field /ðxÞ, which represents a scalar with mass ms, and a spin-1/2 field WðxÞ, which
represents a fermion with mass mf , interact via scalar electrodynamics, represented by the massless, scalar
field A, the renormalizable interaction Lagrangian is

Lint ¼: g1 �WWAWþ g2/
yA/ : : ð2:1Þ

(The notation is that of [22]. The constants �h and c are set to unity. Repeated Greek indices are summed

from 0–3 and repeated Roman indices are summed from 1–3. Bold variables represent vectors in three-

dimensional space.) Following standard procedures [12], in the ladder approximation and in the zero-

energy limit, the Bethe–Salpeter equation describing a bound state of a spin-0 boson and a spin-1/2

fermion is

ðplcl � mfÞðplpl � m2
s ÞvðpÞ ¼

ig1g2
ð2pÞ4

Z 1

�1

d4q

ðp � qÞ2 þ i�
vðqÞ: ð2:2Þ

Performing a Wick rotation [13], (2.2) becomes

ð~cc � p þ mfÞðp � p þ m2
s ÞWðpÞ ¼ g1g2

ð2pÞ4
Z 1

�1

d4q
ðp � qÞ � ðp � qÞWðqÞ: ð2:3Þ

In the above equation WðpÞ � vðip0; pÞ, the Euclidean scalar product p � p � p0p0 þ p � p and
~cc � p � ~cc0p0 þ ~ccipi. The matrices ~ccl are given by ~cc0 � �ic0; ~cci � ci.

Dimensionless variables are introduced by defining mf � mð1� DÞ; ms � mð1þ DÞ; p0 � p=m and

q0 � q=m. Writing (2.3) in terms of dimensionless variables and omitting primes since all momenta are now

dimensionless,

½~cc � p þ ð1� DÞ�½p � p þ ð1þ DÞ2�WðpÞ ¼ g1g2
ð2pÞ4m

Z 1

�1

d4q
ðp � qÞ � ðp � qÞWðqÞ: ð2:4Þ
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Spherical coordinates are introduced as follows:

p0 ¼ jpj cos h2;
pz ¼ jpj sin h2 cos h3;
px ¼ jpj sin h2 sin h3 sin/;
py ¼ jpj sin h2 sin h3 cos/:

ð2:5Þ

The four-vector q is written similarly in terms of primed angles. Then

d4q ¼ jqj3 sin2 h02 sin h
0
3 dh

0
2 dh

0
3 d/

0 djqj � jqj3 djqjdX0
ð3Þ ð2:6Þ

and

ðp � qÞ � ðp � qÞ ¼ jpj2 þ jqj2 � 2jpjjqj cosH; ð2:7Þ
where H is the angle between the vectors p and q.

The Bethe–Salpeter equation separates into two coupled equations in the variable jpj when the solution

is written in the form

Wð�ÞðpÞ ¼ Fð�ÞðjpjÞWð�Þ
1 ðh2; h3;/Þ þ Gð�ÞðjpjÞWð�Þ

2 ðh2; h3;/Þ: ð2:8Þ

The four-component column vectors Wð�Þ
1 and Wð�Þ

2 , which are defined in [5], have components that are

hyperspherical harmonics in four-dimensional space and are related as follows:

Wð�Þ
1 ¼ c5W

ðþÞ
1 and Wð�Þ

2 ¼ c5W
ðþÞ
2 : ð2:9Þ

The functions Wð�Þ
1 and Wð�Þ

2 satisfy the relationships

~cc � pWð�Þ
1 ¼ �jpjWð�Þ

2 and ~cc � pWð�Þ
2 ¼ �jpjWð�Þ

1 : ð2:10Þ

After substituting WðþÞðpÞ as given in (2.8) into the Bethe–Salpeter Eq. (2.4), the left-hand side can be

simplified using (2.10), and the angular integration on the right-hand side can be performed using Hecke�s
theorem [23]. (All formulas necessary for carrying out the angular integration are given in the appendix

of [5].) The coefficients of WðþÞ
1 ðh2; h3;/Þ and WðþÞ

2 ðh2; h3;/Þ must vanish independently, yielding the
following two separated, coupled equations:
�
jpj2 þ ð1þ DÞ

�2 ð1
�

� DÞF ðþÞðjpjÞ þ jpjGðþÞðjpjÞ
�

¼ g1g2
ð2pÞ4m

Z 1

0

jqj3Kð2Þ
k1�1

2

ðjpj; jqjÞF ðþÞðjqjÞdjqj; ð2:11aÞ
�
jpj2 þ ð1þ DÞ

�2�� jpjF ðþÞðjpjÞ þ ð1� DÞGðþÞðjpjÞ
�

¼ g1g2
ð2pÞ4m

Z 1

0

jqj3Kð2Þ
k1þ1=2ðjpj; jqjÞG

ðþÞðjqjÞdjqj: ð2:11bÞ

In the above equation the index k1 ¼ 1=2; 3=2; . . . and

Kð2Þ
n ðjpj; jqjÞ ¼ 2p2

jpjjqj
Rðjpj; jqjÞnþ1

nþ 1
; ð2:12aÞ

where
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Rðjpj; jqjÞ ¼
jqj
jpj if jqj6 jpj;
jpj
jqj if jqjP jpj:

(
ð2:12bÞ

When Wð�ÞðpÞ as given in (2.8) is substituted into the Bethe–Salpeter Eq. (2.4), the two equations that are

obtained are identical to (2.11) after making the substitutions F ðþÞðjpjÞ ! F ð�ÞðjpjÞ and GðþÞðjpjÞ !
�Gð�ÞðjpjÞ. Since no additional eigenvalues are obtained by considering this second set of equations, at-

tention is restricted to (2.11), and the superscripts (+) are dropped for F ðþÞðjpjÞ and GðþÞðjpjÞ.
The boundary conditions as jpj approaches zero and infinity are readily obtained from the separated

(2.11) and the asymptotic properties of Kð2Þ
n ðjpj; jqjÞ that immediately follow from (2.12):

Kð2Þ
n ðjpj; jqjÞ !

jpj!0
jpjn; ð2:13aÞ
Kð2Þ
n ðjpj; jqjÞ !

jpj!1

1

jpjnþ2
: ð2:13bÞ

As jpj approaches zero, the functions F ðjpjÞ and GðjpjÞ have the asymptotic properties

F ðjpjÞ !
jpj!0

jpjf and GðjpjÞ !
jpj!0

jpjg; ð2:14Þ

where the constants f and g must be determined. Using (2.13a) and (2.14), at small jpj (2.11) becomes

ð1þ DÞ2 ð1� DÞjpjf þ jpjgþ1

�jpjfþ1 þ ð1� DÞjpjg
� �

� g1g2
m

jpjk1�1=2

jpjk1þ1=2

� �
: ð2:15Þ

Eq. (2.15) is satisfied at small jpj provided

f ¼ k1 �
1

2
and gP k1 þ

1

2
: ð2:16Þ

As jpj approaches infinity, the functions F ðjpjÞ and GðjpjÞ have the asymptotic properties

F ðjpjÞ !
jpj!1

1

jpjf 0
and GðjpjÞ !

jpj!1

1

jpjg0
: ð2:17Þ

Substituting (2.17) into (2.11) and solving the equation in the limit of large jpj yields

f 0 P k1 þ
11

2
and g0 ¼ k1 þ

9

2
: ð2:18Þ
3. Numerical solution of the Bethe–Salpeter equation

The separated Bethe–Salpeter (2.11) is solved numerically using a method that is a generalization of

the unsuccessful analytical procedure originally proposed by Sugano and Munakata [17]. The method

used here is similar to that proposed in [17] in that solutions are expressed as sums of hyperspherical
harmonics in five-dimensional Euclidean space and that all integrations are performed analytically using

Hecke�s theorem [23]. The major differences are as follows: (1) Solutions are expanded in terms of basis

functions, each of which satisfies the boundary conditions. (2) To analytically integrate the terms in the

expansion for GðjpjÞ, GðjpjÞ must be reexpressed in terms of a series with two indices that independently

range to infinity. (3) The resulting matrix equation yields solutions both when the constituent masses are
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equal and unequal. (4) The equation is solved numerically and does not appear to be readily solvable

analytically.

To solve the equation, four-dimensional momentum space is projected onto the surface of a unit, five-

dimensional sphere,

jpj ¼ tanðh1=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� z
1þ z

r
; z � cos h1; ð3:1Þ

a procedure originally proposed by Fock [24] and elaborated on by L�eevy [25]. In this five-dimensional

space, hyperspherical harmonics Yl are of the form

Yl ¼ P ð3Þ
l;p1

ðcos h1ÞP ð2Þ
p1;p2

ðcos h2ÞP ð1Þ
p2;p3

ðcos h3Þe�ip3/; ð3:2Þ

where the integers l; p1; p2, and p3 satisfy the conditions lP p1 P p2 P p3 P 0. In (3.2) the spherical

functions P ðsÞ
i;j ðzÞ are given by [5]

P ðsÞ
i;j ðzÞ ¼ ð1� z2Þj=2 dj

dzj
Cs=2

i ðzÞ: ð3:3Þ

The Cs=2
i ðzÞ in (3.3) are Gegenbauer polynomials.

Solutions are sought that are of the form

F ðjpjÞ �
XN
n¼0

fnð1� zÞnf ð1þ zÞn
0
f P ð3Þ

nþk1�1
2
;k1�1

2

ðzÞ ð3:4aÞ

and

GðjpjÞ �
XN
n¼0

gnð1� zÞngð1þ zÞn
0
gP ð3Þ

nþk1þ1
2
;k1þ1

2

ðzÞ: ð3:4bÞ

The final indices k1 � 1=2 in P ð3Þ
i;k1�1=2ðzÞ in (3.4a) and (3.4b) are chosen, respectively, so that each term in the

expansion of the solution is a hyperspherical harmonic. Since from (3.3), P ð3Þ
i;j ðzÞ ¼ 0 for i < j, the sums over

n in (3.4) have been restricted to include only non-zero terms. The constants nf ; ng; nf 0 ; and ng0 are now

chosen so that each of the basis functions in (3.4) obeys the boundary conditions. Since no additional

solutions were found when the parameter g in (2.16) was greater than k1 þ 1=2 or when f 0 in (2.18) was
greater than k1 þ 11=2, those cases will not be considered here.

From definition (3.3) of P ð3Þ
i;j ðzÞ, for z near �1,

P ð3Þ
i;j ðzÞ � ð1� z2Þj=2: ð3:5Þ

From (2.14) and (2.16), for small momenta jpj, F ðjpjÞ � jpjk1�1=2
. Requiring that the basis functions in (3.4a)

have this same behavior at small jpj yields the equation

F ðjpjÞ � jpjk1�1=2 � ð1� zÞðk1�1=2Þ=2 � ð1� zÞnf ð1� zÞðk1�1=2Þ=2
; ð3:6Þ

which has the solution nf ¼ 0. The remaining three constants are determined in a similar fashion with the

result

n ¼ 0; n ¼ 0; n 0 ¼ 3; n 0 ¼ 2: ð3:7Þ
f g f g
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As a consequence of (3.7), solutions are sought that are of the form

F ðjpjÞ ¼
XN
n¼0

fnð2nþ 2k1 þ 2Þ cos6ðh1=2ÞP ð3Þ
nþk1�1

2
;k1�1

2

ðzÞ; ð3:8aÞ
GðjpjÞ ¼
XN
n¼0

gnð2nþ 2k1 þ 4Þ cos4ðh1=2ÞP ð3Þ
nþk1þ1

2
;k1þ1

2

ðzÞ: ð3:8bÞ

Eqs. (3.8) differ from (3.4) by constants that have been included for calculational convenience. With the aid

of an identity in the appendix of [5], each basis function can be rewritten as a sum of spherical functions, so

the basis functions in 3.8 are of the form (1.4). Sugano and Munakata [17] essentially used the expansions

(3.8) except that in (3.8b), cos4ðh1=2Þ is replaced by cos6ðh1=2Þ so that the basis functions in (3.8b) do not
satisfy the boundary conditions satisfied by GðjpjÞ.

The unit vector ûu in five-dimensional space is defined by

ûu � ðcos h1; sin h1 cos h2; sin h1 sin h2 cos h3; sin h1 sin h2 sin h3 cos/; sin h1 sin h2 sin h3 sin/Þ: ð3:9Þ

Defining the momentum jqj and the unit vector v̂v as in (3.1) and (3.9), respectively, except in terms of

primed angles,

1

ðp � qÞ2
¼

cos2 h1
2
cos2

h01
2

1
2
ð1� cosHÞ ; ð3:10Þ

where H is the angle between the unit vectors ûu and v̂v, and

d4q ¼ sin3 h01 sin
2 h02 sin h

0
3dh

0
1dh

0
2dh

0
3d/

0

16 cos8ðh01=2Þ
�

dX0
ð4Þ

16 cos8ðh01=2Þ
: ð3:11Þ

Using the above results to write the Bethe–Salpeter Eq. (2.4) in terms of angular variables,

1

2
D2
�

þ 2Dþ 2þ DðDþ 2Þz
� 1

2
ð1

�(
þ zÞ

�2
ð1� DÞ

XN
n¼0

fnð2nþ 2k1 þ 2ÞP ð3Þ
nþk1�1

2
;k1�1

2

ðzÞWðþÞ
1 ðh2; h3;/Þ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p XN
n¼0

gnð2nþ 2k1 þ 4ÞP ð3Þ
nþk1þ1

2
;k1þ1

2

ðzÞWðþÞ
1 ðh2; h3;/Þ �

1

2
cos2ðh1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

�
XN
n¼0

fnð2nþ 2k1 þ 2ÞP ð3Þ
nþk1�1

2
;k1�1

2

ðzÞWðþÞ
2 ðh2; h3;/Þ þ cos2ðh1=2Þð1� DÞ

�
XN
n¼0

gnð2nþ 2k1 þ 4ÞP ð3Þ
nþk1þ1

2
;k1þ1

2

ðzÞWðþÞ
2 ðh2; h3;/Þ

)

¼ cos2ðh1=2Þ
g1g2

ð4pÞ4m

Z
dX0

ð4Þ
1
2
ð1� cosHÞ

XN
n¼0

fnð2n
(

þ 2k1 þ 2ÞP ð3Þ
nþk1�1

2
;k1�1

2

ðz0ÞWðþÞ
1 ðh02; h

0
3;/

0Þ

þ 1

cos2ðh01=2Þ
XN
n¼0

gnð2nþ 2k1 þ 4ÞP ð3Þ
nþk1þ1

2
;k1þ1

2

ðz0ÞWðþÞ
2 ðh02; h

0
3;/

0Þ
)
: ð3:12Þ

Each term in the first sum on the right-hand side of (3.12) is a hyperspherical harmonic so the integral over

each term can immediately be evaluated using Hecke�s theorem [25]. (All necessary formulas are in the

appendix of [5].) Because the factor 1= cos2ðh01=2Þ multiplies the second sum on the right-hand side of (3.12),
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each term is not a hyperspherical harmonic. However, it is possible to rewrite the second sum in terms of

hyperspherical harmonics using the expansion

1

cos2ðh1=2Þ
P ð3Þ
i;r ðzÞ ¼

X1
k¼1

að3Þi;r;kP
ð3Þ
k�1þr;rðzÞ: ð3:13Þ

In Appendix A the expansion parameter að3Þi;r;1 is calculated explicitly and a recursion relation is derived that

allows the calculation of all remaining expansion parameters að3Þi;r;k, kP 2. Using (3.13) the second term on

the right-hand side of (3.12) can now be integrated using Hecke�s theorem. The coefficients of WðþÞ
1 and

WðþÞ
2 must vanish independently, yielding two coupled, algebraic equations. Multiplying both equations by

four and cancelling the common factor of cos2ðh1=2Þ in the second equation,

D2
�

þ 2Dþ 2þ DðDþ 2Þz
� 1

2
ð1

(
þ zÞ2ð1� DÞ

XN
n¼0

fnð2nþ 2k1 þ 2ÞP ð3Þ
nþk1�1

2
;k1�1

2

ðzÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p XN
n¼0

gnð2nþ 2k1 þ 4ÞP ð3Þ
nþk1þ1

2
;k1þ1

2

ðzÞ
)

¼ g1g2
128p4m

ð1þ zÞ
XN
n¼0

fnð2nþ 2k1 þ 2ÞKð3Þ
nþk1�1

2

P ð3Þ
nþk1�1

2
;k1�1

2

ðzÞ; ð3:14aÞ
D2
�

þ 2Dþ 2þ DðDþ 2Þz
�(

�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p XN
n¼0

fnð2nþ 2k1 þ 2ÞP ð3Þ
nþk1�1

2
;k1�1

2

ðzÞ

þ 2ð1� DÞ
XN
n¼0

gnð2nþ 2k1 þ 4ÞP ð3Þ
nþk1þ1

2
;k1þ1

2

ðzÞ
)

¼ g1g2
64p4m

XN
n¼0

X1
k¼1

gnð2nþ 2k1 þ 4Þ � að3Þ
nþk1þ1

2
;k1þ1

2
;k
Kð3Þ

kþk1�1
2

P ð3Þ
kþk1�1

2
;k1þ1

2

ðzÞ: ð3:14bÞ

In the above equations, the factor Kð3Þ
n ¼ 16p2=ðnþ 1Þðnþ 2Þ (see [5]) occurs when the integration is per-

formed using Hecke�s theorem.

Using identities in [5], the factors of z and
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
in (3.14) can be eliminated with the result that the only

functions that occur in (3.14a) and (3.14b) are of the form P ð3Þ
i;k1�1=2ðzÞ and P ð3Þ

i;k1þ1=2ðzÞ, respectively. Eq. (3.14)
is discretized by truncating the expansion (3.13) and requiring that the coefficient of each spherical function
P ð3Þ
i;k1�1=2ðzÞ vanish. The resulting generalized matrix eigenvalue equation is of the form (1.3), but the matrix

K is not Hermitian, VAH is not zero and neither K nor VH þ VAH is positive definite. All of the eigenvalues are

not forced to be real and, in fact, all are not. Nevertheless, solutions are obtained with real eigenvalues.

When z or
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
multiplies a spherical function P ð3Þ

i;j ðzÞ, one spherical function that results has an index

i ! iþ 1. Therefore, when a finite number of basis functions are used, there are more different spherical

functions in the equations than there are expansion parameters. Thus, a solution is not obtained unless the

expansion parameters fn and gn go to zero sufficiently fast that the expansions converge. When a sufficient

number of basis functions are used, for each real eigenvalue, the expansions for the corresponding solution
converge so that the solution does in fact satisfy the Bethe–Salpeter equation.

As the value of the mass-ratio parameter D decreases to )1.0, larger numbers of basis functions are

required to calculate accurate eigenvalues g1g2=ð8p2mÞ: When k1 ¼ 1=2 and solutions are expanded in terms

of 25 basis functions, eigenvalues are stable to four or five significant figures in the region �0:726D. To
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obtain comparable accuracy when D ¼ �0:98, 150 basis functions are required, and when D < �0:995,
some eigenvalues are accurate only to one or two significant figures when solutions are expanded in terms of

450 basis functions. In Figs. 1 and 2, values of g1g2=ð8p2mÞ graphed with dashed lines indicate that (ei-

gen)values may not be accurate to three significant figures. In addition to the three graphed solutions, other

solutions apparently exist in the region �16D6 � 0:995, but the series expansions do not converge suf-

ficiently well in the region to determine accurate eigenvalues.

As a consequence of the rotational symmetry in four-dimensional space–time, solutions with the same

value of k1 but different values of angular momentum j are degenerate. From (3.2), k1 P j, so the solutions
in Fig. 1 have angular momentum j ¼ 1=2. Similarly, there are degenerate j ¼ 1=2 and j ¼ 3=2 solutions

with k1 ¼ 3=2 as shown in Fig. 2.
Fig. 1. The coupling constant g1g2=ð8p2mÞ as a function of the mass-ratio parameter D when k1 ¼ 1=2.

Fig. 2. The coupling constant g1g2=ð8p2mÞ as a function of the mass-ratio parameter D when k1 ¼ 3=2.



G.B. Mainland / Journal of Computational Physics 192 (2003) 21–35 31
A typical solution for F ðjpjÞ and GðjpjÞ, with a corresponding eigenvalue g1g2=ð8p2mÞ ¼ 2:4986, is

graphed in Fig. 3. The normalization of F ðjpjÞ and GðjpjÞ is arbitrary, but the same. Note that the vertical

scales are different for the two graphs, and that the maximum value of F ðjpjÞ is much larger than that of

GðjpjÞ. From Fig. 3 it is immediately obvious that F ðjpjÞ and GðjpjÞ satisfy the boundary conditions (2.16)

as jpj ! 0: F ðjpjÞ is constant at small jpj and GðjpjÞ grows linearly. The behavior of the solutions as jpj ! 1
is that expected from (2.18): Although too small to be seen in Fig. 3, F ðjpjÞ becomes negative near jpj ’ 4

and then approaches zero from below as 1=jpj6. At large jpj the solution GðjpjÞ approaches zero as 1=jpj5. If
such a solution were intended to describe an actual physical state, the large value of g1g2=ð8p2mÞ implies
that higher-order diagrams are important and, perhaps, even suggests that the perturbative approach is

inappropriate.

To check for errors in the matrix eigenvalue equation, each matrix element was calculated using two

rather different methods. First they were calculated directly from (3.14). Then using the orthogonality

relationZ 1

�1

dzð1� z2Þðs�1Þ=2P ðsÞ
i;j ðzÞP

ðsÞ
i0 ;j ðzÞ ¼

pCðiþ jþ sÞ
2s�2ð2iþ sÞCði� jþ 1ÞC2ðs=2Þ

di;i0 �
1

~NN ðsÞ
i;j

di;i0 ; ð3:15Þ

the matrix elements were calculated from (2.11). Specifically, to calculate the coefficient of

P ð3Þ
KFmin�1þi;k1�1=2ðzÞ, (2.11a) is multiplied by ~NN ð3Þ

KFmin�1þi;k1�1=2ð1� z2ÞP ð3Þ
KFmin�1þi;k1�1=2ðzÞ and then integrated over

the variable z. The parameter KFmin is the minimum value of the index j in P ð3Þ
j;k1�1=2ðzÞ that appears in

(2.11a), and i ¼ 1; 2; . . . ;N . KFmin is calculated analytically by determining how many times the functions

in the equation lower the first index of the spherical functions that are in the expansions for solutions

and recalling that P ðsÞ
i;j ðzÞ ¼ 0 if i < j. The coefficients of P ð3Þ

KGmin�1þi;k1þ1=2ðzÞ are similarly calculated from

(2.11b). The single integration on the left-hand side of the equations and the double integration on the

right-hand sides are performed numerically using Gaussian quadrature with a seven point option between

each knot.

Even though the solutions are calculated from (3.14), they are checked using (2.11), thereby providing a
check of both the steps leading from (2.11) to (3.14) as well as a check of the solutions. For each solution

the left- and right-hand sides of the equations are calculated and compared at momenta jpj corresponding
to N ¼ 20 Chebychev points z. A reliability coefficient rlhs–rhs, which is a statistical measure of how well the

left- and right-hand sides of the equations agree at N widely-distributed values of momenta p1; . . . ; pN, is

then calculated. Letting LHSa
i and RHSa

i be, respectively, the values of the left- and right-hand sides of

(2.11a) at the value of momentum pi, with corresponding expressions for the left- and right-hand sides of

(2.11b), the reliability coefficient is [26]
Fig. 3. The solutions (a) F ðjpjÞ and (b) GðjpjÞ corresponding to an eigenvalue g1g2=ð8p2mÞ ¼ 2:4986 when D ¼ �0:7 and k1 ¼ 1=2.
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rlhs–rhs � 1�
1

2N

PN
i¼1 ðLHSa

i �RHSa
i Þ

2 þ ðLHSb
i �RHSb

i Þ
2

h i
1

2N�1
Dð1Þ

lhs–rhs � 1
2N

Dð2Þ
lhs–rhs

h i ; ð3:16Þ

where

Dð1Þ
lhs–rhs ¼

XN
i¼1

ðLHSa
i

h
þRHSa

i Þ
2 þ ðLHSb

i þRHSb
i Þ

2
i

ð3:17aÞ

and

Dð2Þ
lhs–rhs ¼

XN
i¼1

ðLHSa
i

"
þRHSa

i þ LHSb
i þRHSb

i Þ
#2

: ð3:17bÞ

A reliability coefficient rlhs–rhs of unity indicates that the left- and right-hand sides agree exactly at each

point.

In Fig. 1, for �0:956D the solutions corresponding to the graphed eigenvalues all have reliability co-
efficients rlhs–rhs > 0:999999. Although the number of basis functions is increased for D near minus one,

constraints on computer time precluded obtaining equally accurate solutions for �1:6D < �0:95: For
solutions in the regions �0:996D < �0:95 and �1:06D < �0:99, the minimum reliability coefficients are

0.9993 and 0.99, respectively. The situation regarding reliability coefficients in Fig. 2 is similar.

As an additional check of each solution, from among the N ¼ 20 points where the left- and right-hand

sides of the equations are calculated as part of the computation of the reliability coefficient, the locations

where the absolute differences between the left- and right-hand sides of the equation are the greatest are

printed as are the values of the left- and right-hand sides of the equation. In Fig. 1 for �0:956D, the left-
and right-hand sides almost always agree to at least four significant figures. For solutions in the region

�0:996D < �0:95, the left- and right-hand sides of the equation almost always agree to at least three

significant figures. In the region �1:06D < �0:99, for the least reliable solutions the worst disagreement

between the left- and right-hand sides of the equation is about 25%.
4. Conclusions

The two-body, bound-state Bethe–Salpeter equation is solved numerically by converting it into a gen-

eralized matrix eigenvalue equation for the coupling constant. Although the coupling constant is real in the

Lagrangian, it is usually very difficult to discretize the Bethe–Salpeter equation in such a way that the

eigenvalues of the generalized matrix eigenvalue equation are all real. When it is possible, solutions are

readily obtained. When is is not, it is still possible to obtain solutions in some, if not many, cases by ex-

panding solutions in terms of basis functions that obey the boundary conditions satisfied by the solutions.

To demonstrate the utility of basis functions that obey the boundary conditions, a two-body, bound-

state Bethe Bethe–Salpeter equation is solved for a situation where all eigenvalues of the corresponding
generalized matrix eigenvalue equation are not real. Solutions are obtained in the zero-energy limit for a

bound state of a spin-0 boson and a spin-1/2 fermion with unequal masses that interact via scalar elec-

trodynamics and are described by the Bethe–Salpeter equation in the ladder approximation.

The equation can be discretized and solved using either the Rayleigh–Ritz–Galerkin method or the

method of orthogonal polynomials. Here the method of orthogonal polynomials is used for two reasons: (1)

All integrations can be performed analytically. (2) The original, unsuccessful analytical attempt to solve the

equation used the method. After a Wick rotation, four-dimensional Euclidean space is projected onto the
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surface of a unit, five-dimensional sphere. Solutions are then expanded in terms of linear combinations of

hyperspherical harmonics in five-dimensional space, where each linear combination is chosen such that

each basis function obeys the boundary conditions satisfied by the solution. Because the equation is ro-

tationally invariant in four-dimensional space–time, it separates into two coupled equations in one variable.

The equations are discretized by requiring that the coefficient of each spherical function on the left- and

right-hand sides of the equation be equal. Although this method of discretization does not force all ei-

genvalues to be real, real eigenvalues are calculated. When a sufficient number of basis functions is used, the

expansions corresponding to each real eigenvalue converge to a solution of the Bethe–Salpeter equation.
The possibility is currently being explored that the method used here can be used to obtain both zero-

energy and finite-energy solutions to two-body, bound-state Bethe–Salpeter equations that have heretofore

been intractable.
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Appendix A. Calculation of expansion parameters

The parameters að3Þi;r;k that appear in the expansion

1

cos2ðh=2Þ P
ð3Þ
i;r ðcos hÞ ¼

X1
k¼1

að3Þi;r;kP
ð3Þ
k�1þr;rðcos hÞ ðA:1Þ

are calculated analytically. Specifically, a recursion relation is first derived that allows að3Þi;r;k; kP 2, to be

calculated in terms of i, r, k, and að3Þi;r;1. An analytical expression for the expansion parameter að3Þi;r;1 is then

derived to complete the calculation.

To derive the recursion relation it is convenient to change to the variable z ¼ cos h before multiplying

both sides of (A.1) by cos2ðh=2Þ ¼ 1
2
ð1þ zÞ,

P ð3Þ
i;r ðzÞ ¼

X1
k¼1

að3Þi;r;k

1

2
ð1þ zÞP ð3Þ

k�1þr;rðzÞ: ðA:2Þ

Using (A.23) in [5] to rewrite the right-hand side of the above equation solely in terms of spherical func-
tions,

P ð3Þ
i;r ðzÞ ¼

X1
k¼2

1

2

k þ 2r þ 1

2k þ 2r þ 1
að3Þi;r;k

�
þ að3Þi;r;k�1 þ

k � 2

2k þ 2r � 3
að3Þi;r;k�2

�
P ð3Þ
kþr�2;rðzÞ; ðA:3Þ

where að3Þi;r;0 � 0: The above equation immediately yields the desired recursion relation:

að3Þi;r;k ¼
2k þ 2r þ 1

k þ 2r þ 1
2dkþr�2;i

�
� að3Þi;r;k�1 �

k � 2

2k þ 2r � 3
að3Þi;r;k�2

�
: ðA:4Þ

An expression for að3Þi;r;k is obtained by applying the orthogonality relationship (3.15) to (A.1),

að3Þi;r;k ¼
ð2k þ 2r þ 1Þðk � 1Þ!

2ðk þ 2r þ 1Þ!

Z 1

�1

dz2ð1� zÞP ð3Þ
k�1þr;rðzÞP

ð3Þ
i;r ðzÞ: ðA:5Þ
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The expansion parameter að3Þi;r;1 is calculated using (3.3) and

P ð3Þ
r;r ðzÞ ¼

ð2r þ 1Þ!
2rr!

ð1� z2Þr=2; ðA:6Þ

which follows from (3.3). Thus, (A.5) becomes

að3Þi;r;1 ¼
ð2r þ 3Þ

ð2r þ 2Þ2rr!

Z 1

�1

dzð1� zÞð1� z2Þr d
r

dzr
Cð3=2Þ

i ðzÞ: ðA:7Þ

The above integral is evaluated using the generating function for Gegenbauer polynomials (see, for example

[27])

ð1� 2zt þ t2Þ�3=2 ¼
X1
i¼0

Cð3=2Þ
i ðzÞti: ðA:8Þ

Multiplying both sides of (A.7) by ti and summing over i

X1
i¼0

að3Þi;r;1t
i ¼ ð2r þ 3Þ

ð2r þ 2Þ2rr!

Z 1

�1

dzð1� zÞð1� z2Þr d
r

dzr
ð1� 2zt þ t2Þ�3=2

: ðA:9Þ

Taking the derivative of ð1� 2zt þ t2Þ�3=2 r times with respect to z and rewriting the integral in terms of the

variable h, where cos h ¼ z,

X1
i¼0

að3Þi;r;1t
i ¼ ð2r þ 3Þð2r þ 1Þ!tr�1

ð2r þ 2Þ22rþ1ðr!Þ2

"
� ðt � 1Þ2

Z p

0

dh sin2rþ1 h

ð1� 2t cos hþ t2Þ
2rþ3
2

þ
Z p

0

dh sin2rþ1 h

ð1� 2t cos hþ t2Þ
2rþ1
2

#
:

ðA:10Þ

The above integrals are evaluated using formula 3.665:2 in [28], yielding

X1
i¼0

að3Þi;r;1t
i ¼ 2r þ 3

r þ 1

X1
i¼r

ð�1Þi�rti: ðA:11Þ

The desired formula for að3Þi;r;1 immediately follows from (A.11)

að3Þi;r;1 ¼
0 if i < r;
ð�1Þi�r 2rþ3

rþ1
if iP r:

�
ðA:12Þ
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